How to Avoid Unwanted Pregnancies: Domain Adaptation using Neural Network Models
نویسندگان
چکیده
We present novel models for domain adaptation based on the neural network joint model (NNJM). Our models maximize the cross entropy by regularizing the loss function with respect to in-domain model. Domain adaptation is carried out by assigning higher weight to out-domain sequences that are similar to the in-domain data. In our alternative model we take a more restrictive approach by additionally penalizing sequences similar to the outdomain data. Our models achieve better perplexities than the baseline NNJM models and give improvements of up to 0.5 and 0.6 BLEU points in Arabic-to-English and English-to-German language pairs, on a standard task of translating TED talks.
منابع مشابه
Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods : In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were ...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملNeural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملArtificial neural network model to predict the performance of a diesel power generator fueled with biodiesel
Alternative fuels are intensively investigated for the replacement of the diesel fuel. Today the diesel power generators are mostly used in the various industrial companies in Iran. Therefore, it is necessary to estimate the level of performance of the diesel power generators fueled with biofuels. For the first time, in this study, the prediction of the performance of a diesel power generator m...
متن کامل